Plano de Ensino

Ementa

Introdução à mineração de dados. Análise estatística de dados. O processo de descoberta do conhecimento. Segmentação de sumarização de dados. Métodos de classificação supervisionada. Medidas de capacidade preditiva. Análise de associação. Análise de agrupamentos. Métodos de redução de dimensionalidade. Técnicas de seleção de atributos. Combinação de classificadores. Mineração com Restrições (Web Mining).

Objetivos da disciplina

Apresentar as várias técnicas de mineração estatística de dados.

Conteúdo programático

  1. Introdução à mineração de dados e descoberta de conhecimento
  2. Pré-processamento de dados e redução de dados
  3. Análise descritiva de dados
  4. Métodos de classificação supervisionada
  5. Análise de agrupamento
  6. Análise de associação
  7. Detecção de anomalias

Bibliografia

Bibliografia Base

Bibliografia Complementar

Pré-requisitos

Não possui.

Critérios de avaliação

A avaliação da disciplina é formativa* e somativa**. Os alunos devem entregar as resoluções de atividades e/ou exercícios no Ambiente Virtual de Aprendizagem semanalmente e realizar, ao final do período letivo, uma prova presencial aplicada nos polos da Univesp.

*A avaliação formativa ocorre quando há o acompanhamento dos alunos, passo a passo, nas atividades e trabalhos desenvolvidos, de modo a verificar suas facilidades e dificuldades no processo de aprendizagem e, se necessário, adequar alguns aspectos do curso de acordo com as necessidades identificadas.

**A avaliação somativa é geralmente aplicada no final de um curso ou período letivo. Esse tipo de avaliação busca quantificar o que o aluno aprendeu em relação aos objetivos de aprendizagem do curso. Ou seja, a avaliação somativa quer comprovar se a meta educacional proposta e definida foi alcançada pelo aluno.